Academic Course Description

BHARATH UNIVERSITY

Faculty of Engineering and Technology

Department of Electronics and Communication Engineering

BEI406 Electronic Instrumentation

Fourth Semester, 2015-16 (Even Semester)

Course (catalog) description

This course will introduce industrial instrumentation as used for troubleshooting, process measurements and process control. Specifically, the course will discuss measurement terminology, differentiating between analog and digital, describe the instrumentation used for electronic testing and develop the principles of operation of transducers used for industrial process measurement and control.

Compulsory/Elective course	: Compulsory for ECE students
Credit hours	: 3 Hours
Course Coordinator	: Ms.K.Subbulakshmi, Asst.Professor, Department of ECE

:

Instructors

Name of the instructor	Class Handling	Office location	Office phone	Email (domain: @bharathuniv.ac.in)	Consultation
Ms.K.Subbulakshmi	II ECE	SA 006		subbulakshmi@bharathuniv.ac.in	12.45 – 1.15 PM
Ms. Mohanraj	II ECE	SA 006		mohanraj.ece@bharathuniv.ac.in	12.45 – 1.15 PM

Relationship to other course

Pre-requisites	:	BEE101-Basic Electrical & Electronics Engineering
Assumed knowledge	:	Basic Knowledge In Analog And Digital Electronics
Following courses	:	BEI 601-Control Systems

UNIT 3 DIGITAL INSTRUMENTS

Digital Voltmeters and Multimeters, Automation in Voltmeters, Accuracy of DVM, Guarding Techniques, frequency, period, time interval and pulsewidth measurements, automatic vector voltmeter.

UNIT 4 DATA DISPLAY AND RECORDING SYSTEM

CRO, single beam, dual trace, double beam CRO, Digital storage and Analog storage Oscilloscope, sampling Oscilloscope, Power scope, Curve Tracer, Analog, Digital Recorders and Printers.

UNIT 5 COMPUTER CONTROLLED TEST SYSTEM

Testing and Audio amplifier, Testing a Radio Receiver, Instrument used in Computer Controlled Instrumentation, Digital Control Description, Microprocessor based measurements, Isolation and safety standards of Electronic equipments, Case studies in Instrumentation.

TEXT BOOK

[T1] Rangan C.S., "Instrumentation Devices and Systems", Tata McGraw Hill, 1998.

[T2] Cooper, "Electronic Instrumentation and Measurement Techniques", Prentice Hall of India, 1988.

REFERENCES

[R1] H.S.Kalsi, "Electronic Instrumentation", Tata Mc Graw-Hill Education, 2004.

[R2] J.B.Gupta, "Measurements and Instrumentation", S K Kataria & Sons, Delhi, 2003.

[R3] Oliver and Cage, "Electronic Measurements and Instrumentation", McGraw Hill, 1975.

[R4] https://www.nptel.ac.in

Computer usage: Nil

Professional component

General	-	0%
Basic Sciences	-	0%
Engineering sciences & Technical arts	-	0%
Professional subject	-	100%

Broad area : Communication | Signal Processing | Electronics | VLSI | Embedded

Syllabus Contents

UNIT 1 TRANSDUCERS

Measurements, Instrumentation, Errors in measurements, Calibration and standard, Classification and characteristics of Transducers, Digital, Electrical, Electronic Weighing System, AC / DC Bridge measurement and their applications.

A.F. Generator, Pulse Generator, AM/FM Signal generator, Function generator, Sweep frequency generator, wave analyzers, Spectrum Analyzers, Logic Analyzers, Distortion Analyzers.

UNIT 2 SIGNAL GENERATOR AND SIGNAL ANALYZER

TOTAL 45 HOURS

9 HOURS

9 HOURS

9 HOURS

9 HOURS

9 HOURS

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	February 2 nd week	Session 1 to 14	2 Periods
2	Cycle Test-2	March 2 nd week	Session 15 to 28	2 Periods
3	Model Test	April 3 rd week	Session 1 to 45	3 Hrs
4	University Examination	ТВА	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

To learn the basic concepts and definitions in measurement, bridge configurations and			
their applications, importance of signal generators and analyzers in measurements.	PROGRAM		
This course emphasizes:		OUTCOMES	
	Н	М	L
1. Recognize the evolution and history of units and standards in Measurements.	-	b	-
2. Identify the various parameters that are measurable in electronic instrumentation.	a,c	e,h,i	f
3. Employ appropriate instruments to measure given sets of parameters	c,d	a,b,h,j	-
4. Practice the construction of testing and measuring set up for electronic systems.	a,,c,d,e	h	-
5. To have a deep understanding about instrumentation concept which can be applied to control systems.	-	d,j	i
6. Relate the usage of various instrumentation standards	a,f	-	b,j

H: high correlation, M: medium correlation, L: low correlation

Session	Topics	Problem Solving (Yes/No)	Text / Chapter
UNIT 1	TRANSDUCERS		•
1.	Measurements	No	
2.	Instrumentation	No	
3.	Errors in measurements	No	_
4.	Calibration and Standards	Yes	
5.	Classification and Characteristics of transducers	No	[T1] chapter-1,2
6.	Digital Weighing System	Yes	[R1]chapter-1
7.	Electrical Weighing System	Yes	
8.	Electronic Weighing System	Yes	_
9.	AC/DC Bridge Measurement and their applications	Yes	
UNIT 2	SIGNAL GENERATOR AND SIGNAL ANALYZERS		
10.	A.F. Generator	Yes	
11.	Pulse Generator	Yes	
12.	AM/FM Signal Generator	Yes	
13.	Function Generator	Yes	
14.	Sweep frequency generator	Yes	[T1] chapter –12,19
15.	wave analyzers	Yes	[T1] chapter-8,9
16.	Spectrum Analyzers	Yes	
17.	Logic Analyzers	Yes	
18.	Distortion Analyzers	Yes	
	UNIT 3 DIGITAL INSTRUMENTS	Problem	
19.	Digital Voltmeters	Yes	
20.	Digital Multimeters	Yes	[T1] chapter –19
21.	Automation in Voltmeters	Yes	[R1] chapter – 8,9
22.	Accuracy of DVM	Yes	
23.	Guarding Techniques	No	
24.	Frequency, period measurements	Yes	_
25.	Single Mode lasers, Modulation of Laser Diodes	No	
26.	Temperature effects, Introduction to Quantum laser	No	
27.	Fiber amplifiers	No	
UNIT 4 D	DATA DISPLAY AND RECORDING SYSTEM		
28.	CRO	No	
29.	Single beam CRO	No	
30.	Dual trace CRO	No No	
31.	Double beam CRO	No	[T1] chapter–19
32.	Digital storage Oscilloscope	No	[R1] chapter–12

33.	Analog storage Oscilloscope	No	
34.	Sampling Oscilloscope	No	
35.	Power scope, Curve Tracer	No	
36.	Analog, Digital Recorders and Printers	No	
UNIT 5 (COMPUTER CONTROLLED TEST SYSTEM		
37.	Introduction to computer controlled test system	No	
38.	Testing an Audio amplifier	No	
39.	Testing a Radio Receiver	No	
40.	Instrument used in Computer Controlled Instrumentation	No	[T2] chapter- 13
41.	Digital Control Description	No	
42.	Microprocessor based measurements	No	
43.	Isolation and safety standards of Electronic Equipment	No	
44.	Case studies in Instrumentation	No	
45.	PC based data acquisition system	No	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	10%
Cycle Test – II	-	10%
Model Test	-	25%
Attendance	-	5%
Final exam	-	50%

Prepared by: K.Subbulakshmi, Assistant Professor, Department of ECE

Dated :

Addendum

ABET Outcomes expected of graduates of B.Tech / ECE / program by the time that they graduate:

- a) An ability to apply knowledge of mathematics, science, and engineering fundamentals.
- b) An ability to identify, formulate, and solve engineering problems
- c) An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- d) An ability to design and conduct experiments, as well as to analyze and interpret data
- e) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice
- f) An ability to apply reasoning informed by a knowledge of contemporary issues
- g) An ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- h) An ability in understanding of professional and ethical responsibility and apply them in engineering practices
- i) An ability to function on multidisciplinary teams
- j) An ability to communicate effectively with the engineering community and with society at large
- k) An ability in understanding of the engineering and management principles and apply them in Project and finance management as a leader and a member in a team.

Program Educational Objectives

- **PEO1:** To provide strong foundation in mathematical, scientific and engineering fundamentals necessary to analyze, formulate and solve engineering problems in the field of Electronics And Communication Engineering.
- **PEO2:** To enhance the skills and experience in defining problems in Electronics And Communication Engineering design and implement, analyzing the experimental evaluations, and finally making appropriate decisions.
- **PEO3:** To enhance their skills and embrace new Electronics And Communication Engineering Technologies through self-directed professional development and post-graduate training or education
- **PEO4:** To provide training for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.
- **PEO5:** Apply the ethical and social aspects of modern communication technologies to the design, development, and usage of electronics engineering.

Course Teacher	Signature
Ms.K.Subbulakshmi	
Mr.Mohanraj	

Course Coordinator	Academic Coordinate	or	Professor In-Charg	je	HOD/ECE
(Ms.K.Subbulakshmi)	()	(Dr.)	(Dr.M.Sundararajan)